INTERNATIONAL SOY CONCLAVE 7 – 8 th Oct. 2023, INDORE, INDIA

"Energy Efficiency & Sustainability in Oils & Fats Processing"

Mr. D. V. Chame Founder & CEO DVC PROCESS TECHNOLOGISTS

CONTENTS OF PRESENTATION

- 1. Overview
- 2. Key factors influencing way to "NET ZERO"
- 3. How Fats & Oils Processing Industry can contribute to Net-Zero in their sector
- 3. Crude Soy Oil & by-products Processing Chart
- 4. Utility consumption of 500 TPD Soya oil refinery
- 5. Scope for energy efficient processes in fats & oils processing
 - A. PLF waste steam heat reg. to heat process water
 - B. Heat recovery in deodorization section
 - C. Heat recovery from deodorized oil oil refining section
 - D. Deodorizer vacuum system chilled water
 - E. Solvent extraction plant economizer dist.

CONTENTS OF PRESENTATION

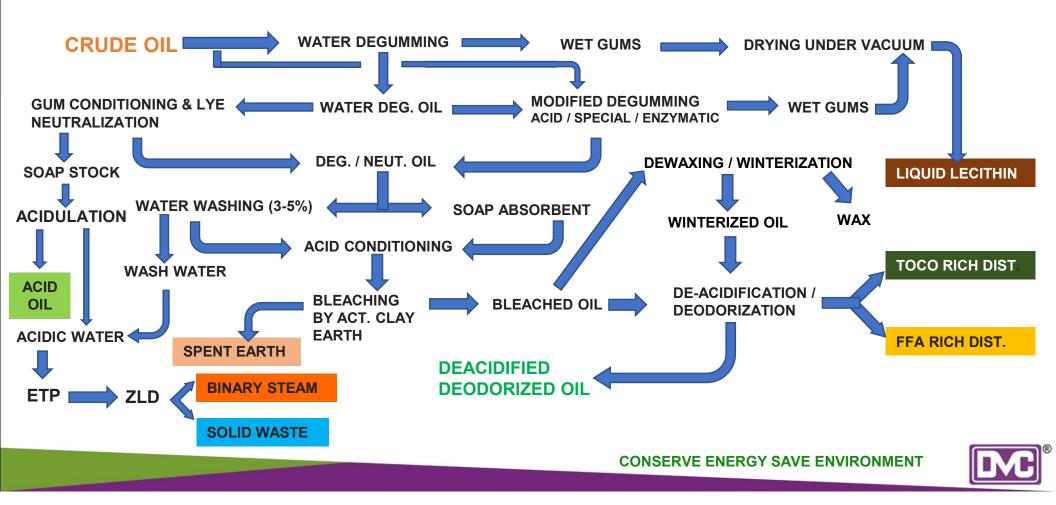
- 6. Zero liquid discharge plant (ZLD)
- 7. Waste water low pressure steam generation
- 8. Re-defining the process & equipment design in existing process plant
- 9. Sustainability
- 10. Pyrolysis of bio-waste
- 11. Integration of renewable energy & conventional sources
- 12. Biofuels

OVERVIEW

- Energy efficiency is priority in present energy crisis rich world, particularly process industry
- Conserving environment is another priority
- Developing energy efficient processes and optimizing uses of environment friendly energy sources like non-conventional, agro-waste & recyclable will help in balancing emissions & environment
- Optimizing utilization of by-products generated in processing (distillates & acid oils) by their further processing adding value to them as well as producing bio-diesel as green fuel.
- Recycling of the wastes

KEY FACTORS INFLUENCING WAY to "NET ZERO"

- Reduce, Re-generate, Recycle
- Need to adopt and develop the energy efficient processes and use environment friendly / green fuels to balance the net effect on environment
- Optimized utilization of by-products generated, by their further processing like dried lecithin, toco rich distillates as value added products while acid oil & FFA rich distillates converting to bio-fuels and using as fuel for generating required energy for process

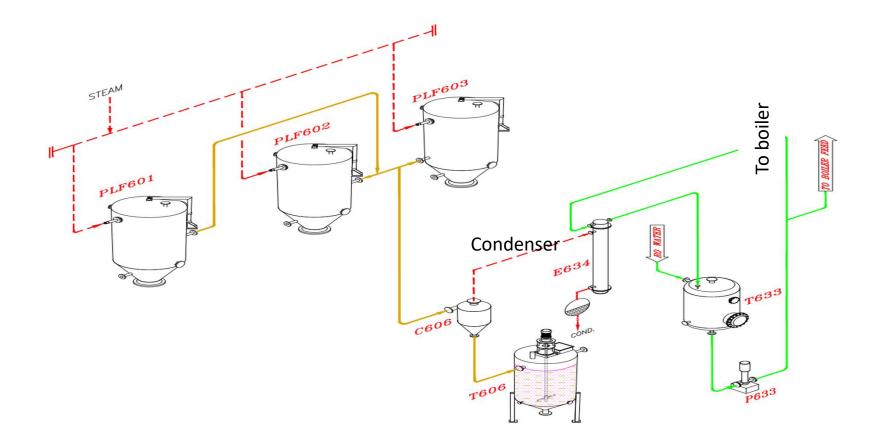


HOW FATS & OIL PROCESSING INDUSTRY CAN CONTRIBUTE TO NET ZERO

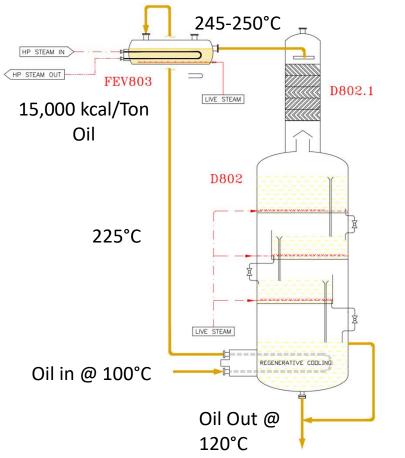
- Identifying & Blocking wastages steam as well as electrical power
- Adopting energy efficient process and equipment designs
- Installing appropriate heat recovery systems (re-generation) to narrow the gap between required & available
- Optimum use of Instrumentation and automation to monitor energy consumption at every processing stage
- Integrating with renewable energy resources like solar, wind, hydrogen, biofuels to cover their energy needs
- Doing plantations and reducing their own carbon footprints

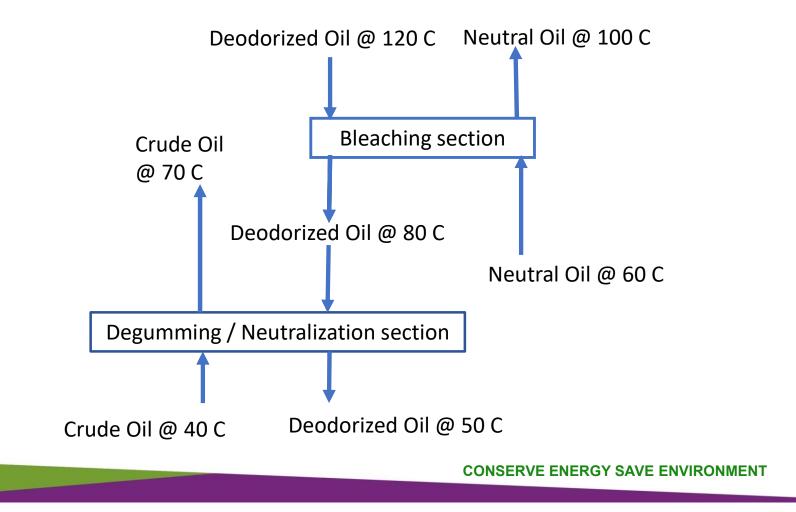
CRUDE (Soy) OIL & BYPRODUCTS PROCESSING CHART

UTILITY CONSUMPTION OF 500 TPD SOYA OIL REFINERY

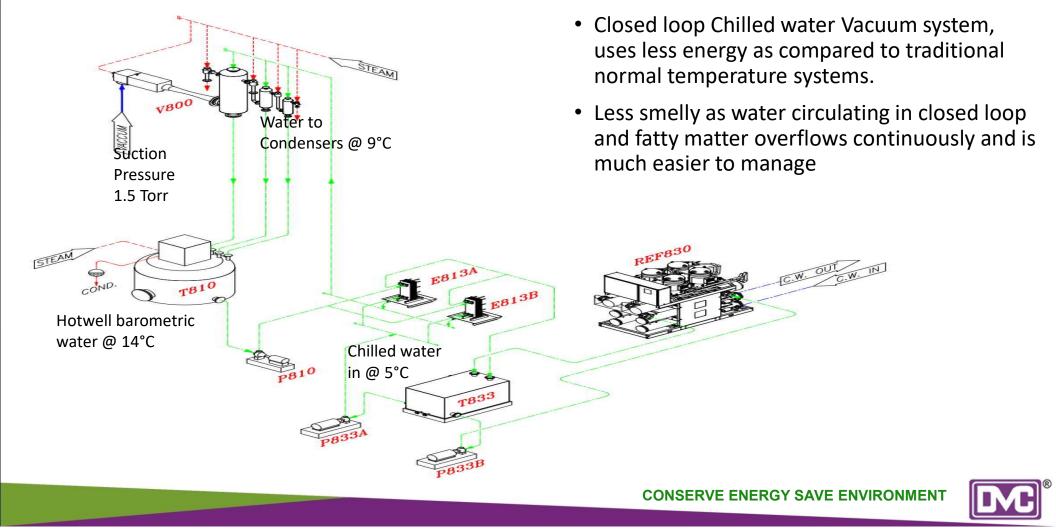

Sr. No.	Parameter	Unit	Deg. Lye ref. & water-washing	Pre- treatment & Bleaching	Deodorization	Lecithin Plant	Acid Oil Plant	Power Cons. for CT & water Cir.	Total Cons. / MT Crude Oil incl. of byproduct
	A: UTILITIES								
1	Feed Oil temp.	٥C	30	80	100	60	60	-	-
2	Steam at 3 barg								
	for heating-start up	Kg	80	20	0	38	23	-	-
	steady state	kg	40	0	0	-	-	-	-
	Live steam	kg	-	10	8	-	-	-	-
	Steam for filter blowing	kg	-	10	-	-	-	-	-
	Steam for vacuum at	kg	0	4	40	7	-	-	-
	2.75 barg and temp. of water 9 °C								
	Total steam Consumption in steady state	kg/T oil pro.	20	24	48	45	23	-	<mark>160</mark>
3	Installed power (indicative	•			80 + 250 for				
	inside process house)	kW	260	60	chilling Unit	41	32	120	843
4	Power Consumption				3				
	(indicative inside process house)	kWH/T oil pro.	8	2.0	+ 8 (chilling Unit)	1.3	0.3	4.5	<mark>27</mark>

SCOPE for ENERGY EFFICIENT PROCESSES in FATS & OILS PROCESSING

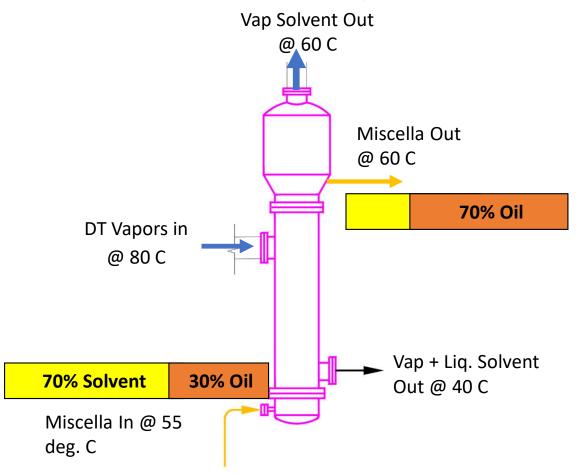

PLF WASTE STEAM – HEAT REG. TO HEAT PROCESS WATER


HEAT RECOVERY IN DEODORIZATION SECTION

- Typical heat regeneration heats oil up to 200-205 deg C. Required energy to reach 245-250 deg C – 25,000 kcal/Ton of oil
- With upgraded regeneration systems or by adding additional heat recovery system –
 225 deg C can be achieved
- Required energy to reach 250 deg C 15,000 kcal/Ton of oil.
- Reduction of about 10,000 kcal/Ton of oil –
 i.e. 40%.



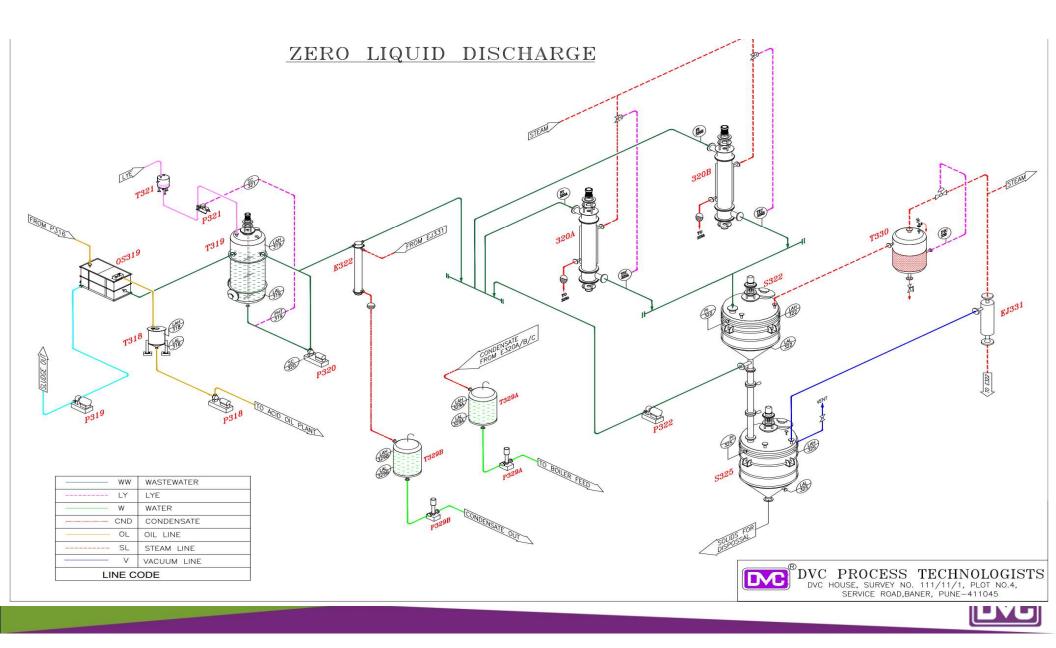
HEAT RECOVERY FROM DEODORIZED OIL – OIL REFINING SECTION



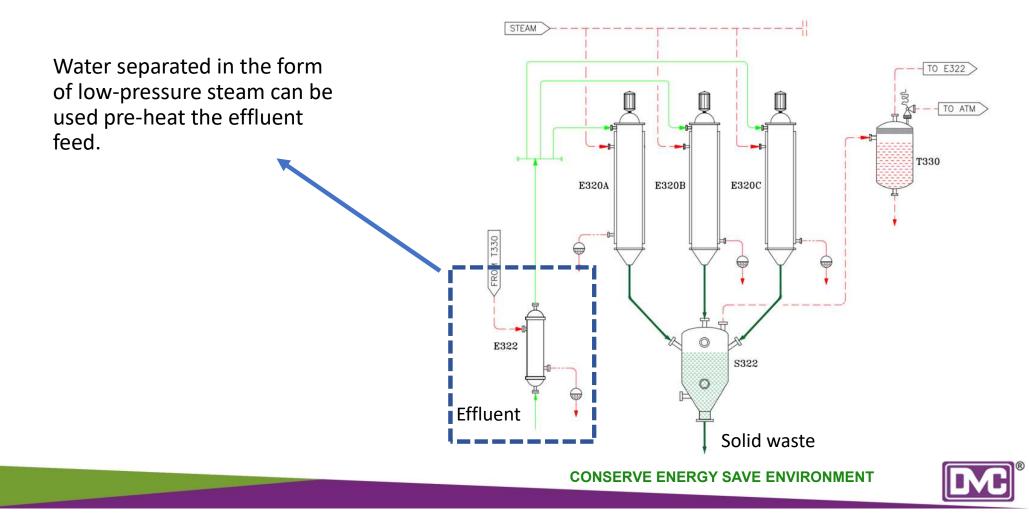
DEODORIZER VACUUM SYSTEM – CHILLED WATER

SOLVENT EXTRACTION PLANT – ECONOMIZER DIST.

By using heat from DT vapors, we can vaporize around 75% of solvent present in incoming Miscella

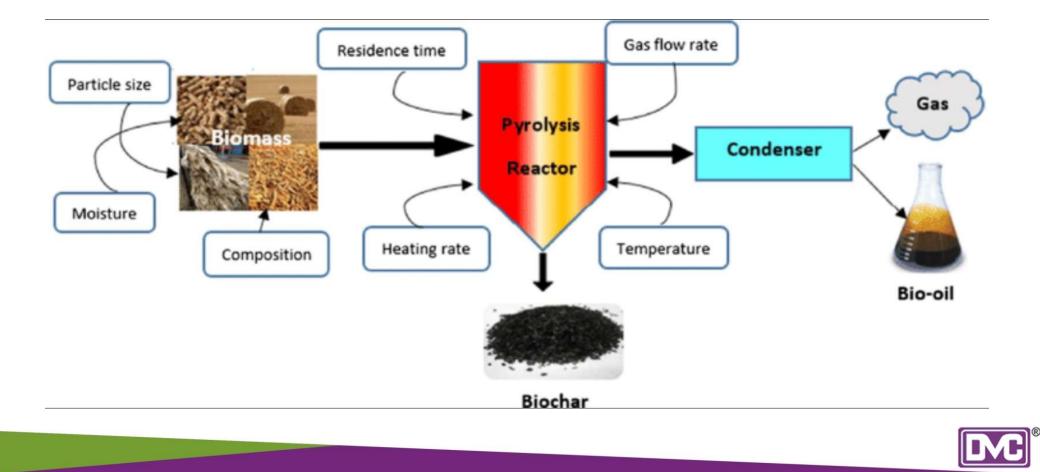


ZERO LIQUID DISCHARGE PLANT (ZLD)

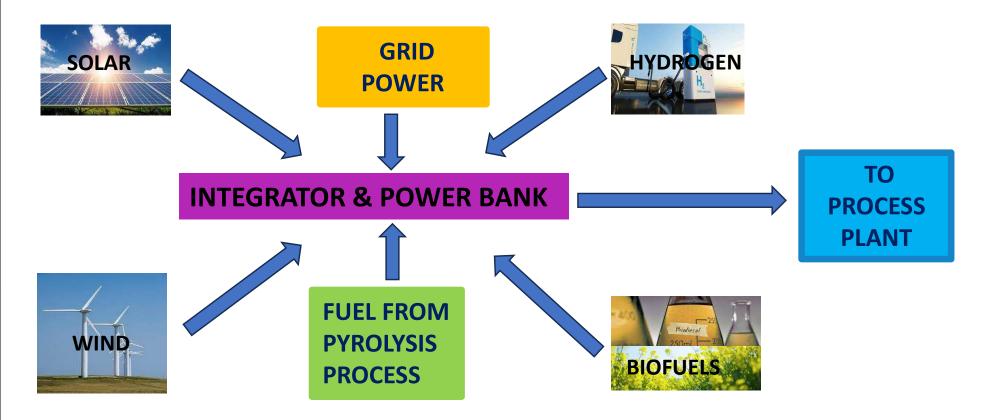

- Any oil traces remains were skimmed off from acidic water received from acid oil plant
- Acidic water is subjected for pH balancing by caustic lye making it near neutral
- Incorporated Scrapped surface exchangers as evaporators to generate binary LP steam, used for process heating (water / oil)
- Residual semi solid sludge with moisture content up to 7% max discharged from system
- Evaporated water in form of binary steam after use in process get condensed and can used as process water effecting as zero discharge to environment

WASTE WATER - LOW PRESSURE STEAM GENERATION

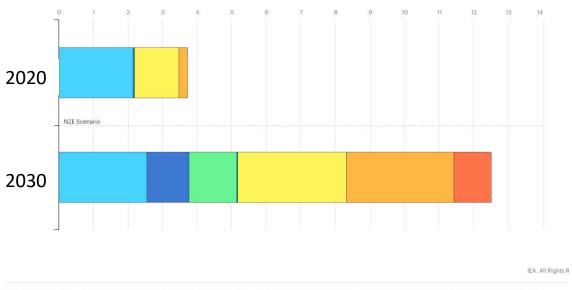
RE-DEFINING THE PROCESS & EQUIPMENT DESIGN IN EXISTING PROCESS PLANT


- Evaluating the scope for re-defining regeneration of heat energy in various processing stages
- Exploring the scope for optimizing pressure drop parameter in process & utilities fluids by studying the various passes in fluids flow as well as redefining the fluid handling devices like pumps in reference to application
- Understanding the chemical kinetics in the current process and finding the scope for its improvement in respect to energy and process inputs like chemicals / reagents usage.
- Synchronization of process parameters as per process needs. E.g. vacuum & sparge steam requirement in deodorization section for getting desired quality with efficiency
- Scope for redesigning of the process & process equipment to get better quality of the product with optimal energy efficiency.

SUSTAINABILITY


- By-products generated during refining process like acid oil (2.5 3%), oil extracted from spent earth (0.3%) and fatty acids from deodorizer distillates (0.3%) totalling around 3.5% can be further processed to produce bio-diesel
- The quantity of biodiesel can be produced from 500 TPD Refinery around 15 TPD
- Produced bio-diesel can be used to produce electrical power & steam to run process plant facility
- Running processing facility on biofuel will leave net zero impact on environment

PYROLYSIS OF BIO-WASTE



INTEGRATION OF RENEWABLE ENERGY & CONVENTIONAL SOURCES

Conventional ethanol
 Conventional ethanol with CCUS
 Advanced ethanol
 Advanced ethanol with CCUS
 Conventional biodiesel
 Advanced biodiesel and biokerosene
 Advanced biodiesel and biokerosene with CCUS

- As of 2020, Biofuels account for only 3% of transport fuel globally.
- To achieve Net Zero by 2050, there should Annual growth of consumption of atleast by 14% every year.
- Europe, America and Asian countries are implementing policies on this path to increase biofuel demand.
- In biofuels, there are two major sources-Biodiesel and Bio-ethanol.
 - Indian government is targeting 20% ethanol blending by 2025.

٠

BIOFUELS

- Biodiesel raw materials Palm Oil, Stearin, PFAD, crop based oils like soya, corn etc.
- Concerns remain about using crops for fuel instead of food production.
- Limitation of resources like land for having additional crops for biofuel production can lead to deforestation that will ultimately lead to a bigger deficit in Net Zero emissions.
- More focus on biofuels produced from waste and residue resources to meet 45% of total biofuel demand by 2030 like Used Cooking oil, Animal fat, Distillates FFA, Acid Oil etc.
- Biodiesel manufacturing can be easily integrated in existing oil processing houses. This will make processors self sustainable for their energy needs.

SUMMING UP

- Oil refining plant can be **self sustainable** provided adopting updates in process design and techniques in case of **energy efficiency** as well as **process automation**
- By-products like lecithin and toco-rich constituents can **add value to process economics** make it viable
- Applying efficient processing techniques not only saves on processing cost like energy consumption but also produces better quality products like low-trans refined soy oil
- By-products like acid oil and FFA from deodorizer distillates and oil from spent earth can be processed to produce biodiesel can full fill energy requirement to some extent
- Zero liquid discharge system is need of the time to make refining operations environment friendly

THANK YOU!

DVC PROCESS TECHNOLOGISTS Technology with Innovation

Technology with Innovation

Contact : DVC House, Sr.No.111/11/1, Plot No.4 Opp B.U. Bhandari Mercedes Benz Showroom Mumbai-Bangalore Highway Service Road Baner, Pune-411045, Maharashtra INDIA

www.dvcprocesstech.com Tel:+91 8669956061 - 64 Email: sales@dvcprocesstech.com, info@dvcprocesstech.com

www.dvcprocesstech.com

